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Abstract - The purpose of this research is to propose a numerical method for the Lamìe coeécients
identiåcation problem in linear elastic wave equation: Determine the unknown Lamìe coeécients from
the knowledge of the plural sets of simultaneous displacement and traction on the surface of an isotropic,
linearly elastic bounded body. We assume that the initial displacement and velocity are given in the
whole domain. To determine the unknown Lamìe coeécients numerically, we adopt the adjoint numerical
method. The minimizing problem with some constrains is introduced by using the variational method.
We show that the objective functional is Gâteaux diãerentiable on the appropriate assumptions. To
ånd the minimum, we employ the projected gradient method. The search direction is set by using the
Gâteaux derivative of the object functional. We show the eéciency of our method by a simple numerical
experiment.

1. INTRODUCTION

In this research, we consider the coeécient identiåcation problem in linear elastic wave equation in
two dimensions. We assume that the elastic body is in a plane strain state.
Let äö R2 be a cross section of an isotropic, linearly elastic, bounded body with smooth boundary

@ä. We denote by ui the i-th component of the displacement (i = 1; 2), by "ij andõij the ij-th component
of the strain and the stress tensors, respectively. The kinematic equations relating the displacement to
the strain are described by

"ij =
1

2

í
@ui
@xj

+
@uj
@xi

ì
:

The constitutive equations representing Hooke's law are given by

õij = 2ñ"ij +ï"kkéij ;

where éij is Kronecker's delta tensor, in which Einstein's summation convection is used for repeated
indices. Here ïand ñare the Lamìe coeécients. The equations of motion are given by

ö
@2ui
@t2

=
@õij
@xj

in äÇ (0; T ] ; (1)

where öand T are the density and the duration of observation time, respectively.
We assume that the Lamìe coeécients ïand ñbelong to L1(ä) and satisfy the following conditions:

0 < C(1)ï î ï(x) î C(2)ï ; 0 < C(1)ñ î ñ(x) î C(2)ñ (2)

for all x 2 ä. Here C(l)ï and C(l)ñ (l = 1; 2) are given positive constants. We notice that assumptions (2)
are stronger condition compared with the conventional ones [2]. Moreover we assume that the density ö,

the initial displacement ui(Å; 0) = f (m)i , and the initial velocity
@u(m)i

@t
(Å; 0) = g(m)i are given in the whole

domain. Then, our problem is to determine the Lamìe coeécients ïand ñfrom the knowledge of the plural

sets of simultaneous surface displacements u(m)i and tractions S
(m)
i on @äÇ (0; T ] (m = 1; 2; : : : ; N).

The uniqueness of this inverse problem is guaranteed if the Lamìe coeécients are smooth functions and
the Dirichlet-Neumann map is given instead of the ånite number of boundary measurements [7].
To determine the unknown Lamìe coeécients numerically, we make use of the adjoint numerical method

[8, 9]. This method is often employed for solving the inverse boundary value problem in control theory
[5]. We introduce an objective functional to be minimized, and then the problem is recast as a variational
problem. We show that the objective functional is Gâteaux diãerentiable under certain assumptions. We
propose a numerical algorithm based on the projected gradient method in order to ånd the minimum
of the functional. The search direction in this method is given by using the Gâteaux derivative of the
objective functional. We conårm the eéciency of our algorithm by a simple numerical experiment.
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2. ADJOINT NUMERICAL METHOD

Let F ö äbe a given compact set such that @ä\F = ;. We now deåne a subset K of L1(ä)ÇL1(ä)
as follows:

K =
ö
(ï; ñ) 2 L1(ä)Ç L1(ä) ååï2 C1(än F ); ñ2 C1(ä n F );

jrïj î C(3)ï on än F; jrñj î C(3)ñ on än F
õ
;

where C(3)ï and C(3)ñ are given positive constants. We denote by u(m)i [ï; ñ] the i-th component of the
weak solution to the linear elastic wave eqn.(1) with the Lamìe coeécients (ï; ñ) 2 K and the surface
displacement u(m)i . Moreover, we denote by "(m)ij [ï; ñ] and õ

(m)
ij [ï; ñ] the ij-th component of the strain

and the stress tensors obtained by using u(m)i [ï; ñ], respectively. The unknown Lamìe coeécients are
determined by minimizing the functional J : K ! R+ := [0; 1), deåned as

J(ï; ñ) =
ë

N

NX
m=1

2X
i=1

Z T

0

Z
@ä

jS(m)i [ï; ñ]Ä S(m)i j2 ds dt ; (3)

where S(m)i [ï; ñ] is the i-th component of the surface traction obtained by using u(m)i [ï; ñ] and ë is a
representative speed of the elastic body ä.
To ånd the minimum of the functional J , we make use of the projected gradient method [4, 6]: For

l = 0; 1; 2; : : :, í
ïl+1
ñl+1

ì
=

í
Pï(ïl ÄãlJï(ïl; ñl))
Pñ(ñl ÄãlJñ(ïl; ñl))

ì
(4)

where the positive constant ãl is a suitable step size and the maps Pï and Pñ are the clip-oãoperators,
deåned by

Pï(ï)(x) :=

8><>: C(1)ï (ï(x) < C(1)ï )

ï(x) (C
(1)
ï î ï(x) î C(2)ï )

C(2)ï (ï(x) > C(2)ï )

and

Pñ(ñ)(x) :=

8><>: C(1)ñ (ñ(x) < C(1)ñ )

ñ(x) (C
(1)
ñ î ñ(x) î C(2)ñ )

C(2)ñ (ñ(x) > C(2)ñ )

;

respectively. The function Jï(ï; ñ) represents the årst variation of the functional J in the direction to
ï, deåned by

J(ï+éï; ñ)Ä J(ï; ñ) =
Z
ä
Jï(ï; ñ)éïdx+ o (kéïk)

for any variation éï in ï, with a real valued functional o(kéïk) of higher order than kéïk as it tends
to zero in the norm k'k := ess sup

x2ä
j'(x)j. The function Jñ(ï; ñ) represents the årst variation of the

functional J in the direction to ñ, deåned by

J(ï; ñ+éñ)Ä J(ï; ñ) =
Z
ä
Jñ(ï; ñ)éñdx+ o (kéñk)

for any variation éñ in ñ. In order to use this method, we require an expression of the årst variations Jï
and Jñ.
We årst attempt to get the expression of the årst variation Jï(ï; ñ). For this purpose, we try to

obtain the Gâteaux partial derivative of the functional J in the direction to ï, deåned by

JW;ï(ï; ñ)h = lim
ê!0

J(ï+êh; ñ)Ä J(ï; ñ)
ê

:

We notice that the Gâteaux partial derivative JW;ï(ï; ñ) coincides with the årst variation Jï(ï; ñ) if
JW;ï(ï; ñ) is bounded linear functional on K and JW;ï(ï; ñ)h can be represented as the functional form
over L1(ä).
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For any (ï; ñ) 2 K, ê2 R, and h 2 L1(ä) such that (ï+êh; ñ) 2 K, we notice that

J(ï+êh; ñ)Ä J(ï; ñ)

=
ë

N

Z T

0

Z
@ä

n
2
ê
S(m)i [ï; ñ]Ä S(m)i

ëo
éS(m)i ds dt+

ë

N

NX
m=1

2X
i=1

Z T

0

Z
@ä

jéS(m)i j2 ds dt ; (5)

where éS(m)i := S(m)i [ï+ êh; ñ] Ä S(m)i [ï; ñ]. To analyze the right hand side of (5), we introduce the

function v
(m)
i which is the i-th component of the weak solution to the initial-boundary value problem8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ö
@2v(m)i

@t2
=
@bõ(m)ij

@xj
in äÇ [0; T );

b"(m)ij =
1

2

†
@v
(m)
i

@xj
+
@v(m)j

@xi

!
in äÇ [0; T );bõ(m)ij = 2ñb"(m)ij +ïb"(m)kk éij in äÇ [0; T );

v
(m)
i = w

(m)
i ;

@v(m)i

@t
= 0 on äÇ fTg;

v(m)i = 2
ê
S(m)i [ï; ñ]Ä S(m)i

ë
on @äÇ [0; T );

(6)

for the "initial" time T . Here w(m)i is the i-th component of the weak solution to the boundary value
problem 8>>>>>>>>><>>>>>>>>>:

@eõ(m)ij

@xj
= 0 in ä;

e"(m)ij =
1

2

†
@w

(m)
i

@xj
+
@w(m)j

@xi

!
in ä;eõ(m)ij = 2ñe"(m)ij +ïe"(m)kk éij in ä;

w(m)i = 2
ê
S(m)i [ï; ñ](Å; T )Ä S(m)i (Å; T )

ë
on @ä:

(7)

We now deåne éõ(m)ij by éõ(m)ij = õ(m)ij [ï+êh; ñ]Äõ(m)ij [ï; ñ]. Then, from (5) and (6), we have

J(ï+êh; ñ)Ä J(ï; ñ) = ë

N

Z T

0

Z
@ä

v(m)i éõ(m)ij nj ds dt+
ë

N

NX
m=1

2X
i=1

Z T

0

Z
@ä

jéS(m)i j2 ds dt : (8)

From the integration by part with respect to the space direction, we can obtainZ T

0

Z
@ä
v
(m)
i éõ

(m)
ij nj ds dt =

Z T

0

Z
ä
b"(m)ij éõ

(m)
ij dx dt+

Z T

0

Z
ä
v
(m)
i

@éõ(m)ij

@xj
dx dt

=

Z T

0

Z
ä

b"(m)ij éõ(m)ij dx dt+

Z T

0

Z
ä

v(m)i ö
@2éu(m)i

@t2
dx dt (9)

for each m, where éu(m)i := u(m)i [ï+êh; ñ]Ä u(m)i [ï; ñ]. From Hooke's law, we can obtain the following
relation:

éõ(m)ij = êhï"
(m)
kk [ï; ñ]éij +êhïé"

(m)
kk éij + 2ñé"

(m)
ij +ïé"(m)kk éij :

Therefore, we have

éõ(m)ij b"(m)ij = êhï"
(m)
kk [ï; ñ] b"(m)ij éij +êhïé"

(m)
kk b"(m)ij éij + 2ñé"

(m)
ij b"(m)ij +ïé"(m)kk b"(m)ij éij

= êhï"
(m)
kk [ï; ñ] b"(m)pp +êhïé"

(m)
kk b"(m)pp + 2ñé"(m)ij b"(m)ij +ïé"(m)ij b"(m)pp éij

= êhï"
(m)
kk [ï; ñ] b"(m)pp +êhïé"

(m)
kk b"(m)pp +é"(m)ij

ê
2ñb"(m)ij +ïb"(m)pp éij

ë
= êhï"

(m)
kk [ï; ñ] b"(m)pp +êhïé"

(m)
kk b"(m)pp +é"(m)ij bõ(m)ij : (10)
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By substituting (10) into (9), we obtainZ T

0

Z
@ä
v(m)i éõ(m)ij njds dt = ê

Z T

0

Z
ä
h "(m)kk [ï; ñ] b"(m)pp dx dt+ê

Z T

0

Z
ä
hé"(m)kk b"(m)pp dx dt

+

Z T

0

Z
ä
é"
(m)
ij bõ(m)ij dx dt+

Z T

0

Z
ä
ö
@2éu(m)i

@t2
v
(m)
i dx dt : (11)

Using the integration by part and éu(m)i j@äÇ(0; T ] = 0, we obtainZ T

0

Z
ä

é"(m)ij bõ(m)ij dx dt = Ä
Z T

0

Z
ä

éu(m)i ö
@2v(m)i

@t2
dx dt : (12)

Since éu(m)i (Å; 0) = 0,
@éu(m)i

@t
(Å; 0) = 0, v(m)i (Å; T ) = w(m)i , and

@v(m)i

@t
(Å; T ) = 0 in ä, we obtain the

relation Z T

0

Z
ä

(
ö
@2éu(m)i

@t2
v(m)i Äéu(m)i ö

@2v(m)i

@t2

)
dx dt =

Z
ä

ö
@éu(m)i

@t
(Å; T )w(m)i dx : (13)

From eqns (11){(13), we haveZ T

0

Z
@ä
v(m)i éõ(m)ij nj ds dt

= ê

Z T

0

Z
ä

h "(m)kk [ï; ñ] b"(m)pp dxdt+

Z
ä

ö
@éu(m)i

@t
(Å; T )w(m)i dx+ê

Z T

0

Z
ä

hé"(m)kk b"(m)pp dx dt : (14)

Hence, from (8) and (14), we can obtain the following relation:

J(ï+êh; ñ)Ä J(ï; ñ) = ê
Z
ä

h

†
ë

N

Z T

0

"(m)kk [ï; ñ] b"(m)pp dt

!
dx+

ë

N

Z
ä

ö
@éu(m)i

@t
(Å; T )w(m)i dx

+ê
ë

N

Z T

0

Z
ä

hé"(m)kk b"(m)pp dx dt+
ë

N

NX
m=1

2X
i=1

Z T

0

Z
@ä

jéS(m)i j2 ds dt :

We assume that the density öis a positive constant in the whole domain and the surface displacements

u(m)i 2 C6
ê
[0; T ];H

5
2 (@ä)

ë
with

@ku(m)i

@tk
(Å; 0) = 0 for k = 0; 1; : : : ; 5. Then, we can get the Gâteaux

derivative of J by using Choi and Nakamura's result in the scalar wave case [3]. They have obtained the
Gâteaux derivative of the functional

V 3 K 7!
Z T

0

Z
@ä

jK @u
@n
Ä qj2 ds dt ;

where u is a solution to the scalar wave equation

@2u

@t2
ÄrÅ(Kru) = 0 in äÇ (0; T ]

and

V :=

ö
K 2 L1(ä) åå0 < C1 îK î C2 on ä ; K 2 C1(ä n F ) ; jrKj î C3 on ä n F

õ
:

Here Ci (i = 1; 2; 3) are given positive constants. We notice that the equations of motion (1) and
the objective functional (3) are the same type of Choi and Nakamura's ones. Therefore, by using their
technique to estimate the functional, we can obtain

lim
ê!0

1

ê

Z
ä
ö
@éu

(m)
i

@t
(Å; T )w(m)i dx =

Z
ä
ö
@U

(m)
i

@t
[h; 0](Å; T )w(m)i dx ;

lim
ê!0

Z T

0

Z
ä

hé"(m)kk b"(m)pp dx dt = 0 ; lim
ê!0

1

ê

NX
m=1

2X
i=1

Z T

0

Z
@ä

jéS(m)i j2 ds dt = 0 ;
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and the map h 7!
Z
ä

ö
@U (m)i

@t
[h; 0](Å; T )w(m)i dx is bounded linear on L1(ä) for (ï; ñ) 2 K. Here we

denote by the function U (m)i [p; q] the weak solution of the initial-boundary value problem with the source

term F (m)i [p; q] as follows:8>>>>>>>>>>>><>>>>>>>>>>>>:

ö
@2U

(m)
i

@t2
=
@îõ(m)ij

@xj
+ F (m)i [p; q] in äÇ (0; T ];

î"(m)ij =
1

2

†
@U (m)i

@xi
+
@U (m)j

@xi

!
in äÇ (0; T ];

îõ(m)ij = 2ñî"(m) +ïî"(m)éij in äÇ (0; T ];
U (m)i = 0;

@U (m)i

@t
= 0 on äÇ f0g;

U (m)i = 0 on @äÇ (0; T ];

(15)

where F (m)i [p; q] :=
@ú(m)ij

@xj
[p; q] and úij [p; q] := 2 q "

(m)
ij [ï; ñ] + p "

(m)
kk [ï; ñ]éij .

Therefore, we have

JW;ï(ï; ñ)h =

Z
ä
h

†
ë

N

Z T

0
"(m)kk [ï; ñ] b"(m)pp dt

!
dx+

ë

N

Z
ä
ö
@U

(m)
i

@t
[h; 0](Å; T )w(m)i dx :

Moreover, by Example 5 on page 118 of [10], there exists a unique sï 2 L1(ä) such thatZ
ä

h sïdx =

Z
ä

ö
@U (m)i

@t
[h; 0](Å; T )w(m)i dx for 8h 2 L1(ä) : (16)

Hence we can obtain the expression of årst variation as follows:

Jï(ï; ñ) =
ë

N

† Z T

0

"(m)kk b"(m)pp dt+ sï

!
:

In a similar way, we can determine the Gâteaux partial derivative of the functional J in the direction
to ñ, deåned by

JW;ñ(ï; ñ)h = lim
ê!0

J(ï; ñ+êh)Ä J(ï; ñ)
ê

:

For any (ï; ñ) 2 K, ê2 R, and h 2 L1(ä) such that (ï; ñ+êh) 2 K, we can obtain

JW;ñ(ï; ñ)h =

Z
ä

h

†
ë

N

Z T

0

2"(m)ij [ï; ñ] b"(m)ij dt

!
dx+

ë

N

Z
ä

ö
@U (m)i

@t
[0; h](Å; T )w(m)i dx ;

and there exists a unique sñ 2 L1(ä) such thatZ
ä
h sñdx =

Z
ä
ö
@U

(m)
i

@t
[0; h](Å; T )w(m)i dx for 8h 2 L1(ä) : (17)

Hence we have

Jñ(ï; ñ) =
ë

N

† Z T

0

2"(m)ij [ï; ñ] b"(m)ij dt+ sñ

!
:

Thus in order to identify the unknown Lamìe coeécients, we can summarize the algorithm as follows:

Numerical algorithm

1. Select the initial Lamìe coeécients ï0 and ñ0 which satisfy condition (2).

2. For l = 0; 1; 2; : : : : : :; do
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(a) Solve the linear elastic wave eqns (1) with the surface displacements u(m)i to ånd "(m)ij and S(m)i

for m = 1; 2; : : : ; N .

(b) Solve the boundary value problems (7) to ånd w
(m)
i for m = 1; 2; : : : ; N .

(c) Solve the initial-boundary value problems (6) to ånd b"(m)ij for m = 1; 2; : : : ; N .

(d) Find the function sï and sñ by solving (16) and (17), respectively.

(e) Calculate the årst variations Jï(ïl; ñl) and Jñ(ïl; ñl):

Jï(ïl; ñl) =
ë

N

† Z T

0

"(m)kk b"(m)pp dt+ sï

!
; Jñ(ïl; ñl) =

ë

N

† Z T

0

2 "(m)ij b"(m)ij dt+ sñ

!
:

(f) Choose the step size ãl.

(g) Update the Lamìe coeécients by (4).

3. NUMERICAL EXPERIMENT

In this section, we show a simple numerical experiment for our algorithm. Let ä be a disk with the
radius of L = 1 [m] and assume ö= 10:0 Ç 103 [kg/m3]. The exact Lamìe coeécients ï [Pa] and ñ [Pa]
are set as follows (see Figures 1 and 2):

ï(x) =

(
1:15Ç 1011 (kxk1 < 0:15)
1:51Ç 1011 (otherwise)

;

ñ(x) =

(
0:77Ç 1011 (kxk1 < 0:15)
0:65Ç 1011 (otherwise)

;

where k Åk1 means the maximum norm of R2.

Figure 1. Exact ï. Figure 2. Exact ñ.

We utilize the speed of transverse wave on the boundary as the representative speed ë, namely,

ë=

r
ñ

ö

åååå
@ä

= 2:55Ç 103 [m/s] :

The constants in the constrained condition (2) are given by C
(1)
ï = 1:00 Ç 1011, C(2)ï = 1:75 Ç 1011,

C(1)ñ = 0:55Ç 1011, and C(2)ñ = 0:90Ç 1011. The length of time is T = 1:01Ç 10Ä3 [s] corresponding to
2:6=ë. The initial displacement and velocity are both set to 0:0. We assume that the number of boundary
measurement sets is N = 3.
The boundary data for this example are generated by solving numerically the linear elastic problems

with the traction S
(m)
i

åå
@ämÇ(0; T ] = Äp(t)ni and S

(m)
i

åå
(@än@äm)Ç(0; T ] = 0:0, where

@äm =
n
(cosí; siní)

ååÄ ô

50
< íÄ (mÄ 1)ô

4
<
ô

50

o
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and

p(t) =

8>><>>:sin
í
12:5ôë

L
t

ì í
0 î t î 0:16L

ë

ì
0:0

í
t >

0:16L

ë

ì :

In order to solve this problem numerically, we make use of the Newmark method [1] for time integration
with linear triangular ånite elements in space. Calculated values on the circle of the radius L = 1 are
used for the surface displacements and tractions in this example. The initial-boundary value problems in
our algorithm are also solved numerically by using the Newmark method for time integration with linear
triangular ånite elements in space (see Figure 3).

Figure 3. Finite elements (5884FE).

We need to obtain the functions sï and sñ which satisfy the relations (16) and (17) in order to
determine the årst variation. We adopt the Galerkin method to get approximately these functions. Let
fBpgNBp=1 be a set of subsets of ä such that

ä=
NB[
p=1

Bp; Bp \Bq = ; (p 6= q) :

We denote by üp the characteristic function satisfying the relation

üp(x) =

ö
1 (x 2 Bp)
0 (otherwise)

:

Then the approximated functions bsï = NBX
p=1

sï;püp and bsñ = NBX
p=1

sñ;püp are obtained by solving the

equations Z
ä

üp bsïdx = Z
ä

ö
@U (m)i

@t
[üp; 0](Å; T )w(m)i dx ;Z

ä
üp bsñdx = Z

ä
ö
@U (m)i

@t
[0; üp](Å; T )w(m)i dx

for p = 1; 2; : : : ; NB , respectively. From the orthogonal relation of the characteristic functions, we notice
that

sï;p =
1

jBpj
Z
ä

ö
@U (m)i

@t
[üp; 0](Å; T )w(m)i dx ;

sñ;p =
1

jBpj
Z
ä

ö
@U (m)i

@t
[0; üp](Å; T )w(m)i dx
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for p = 1; 2; : : : ; NB . In this example, we set NB = 5 and

Bp = fx 2 ä j 0:2 (pÄ 1) < kxk2 < 0:2pg ;
where k Åk2 means the Euclidean norm of R2.
We assume that ï0 = 1:51 Ç 1011 and ñ0 = 0:65 Ç 1011 in the whole domain. After 60 iterations,

we have the calculated ï60 and ñ60 as shown in Figure 4 and Figure 6, respectively. Figure 5 shows
the distribution of the relative error for ï60. The distribution of the relative error for ñ60 is obtained
as shown in Figure 7. These ågures show that the estimated distribution of the coeécients are in good
agreement with the exact ones. However, the identiåed values of the coeécients are not satisfactory.
From this result, we know that our algorithm must be modiåed in order to achieve a high resolution for
the inverse problem.

Figure 4. Calculated ï60. Figure 5. Relative error (coeécient ï).

Figure 6. Calculated ñ60. Figure 7. Relative error (coeécient ñ).

4. CONCLUDING REMARKS

In this study, we considered the numerical algorithm for the problem of coeécient identiåcation in
linear elastic wave equation in two dimensions. The measured data are assumed to be given by the
plural sets of simultaneous surface displacements and tractions on the whole boundary. We assume that
the density is known, whilst the Lamìe coeécients are unknown. To identify numerically the unknown
Lamìe coeécients, we make use of the adjoint numerical method. The problem is reformulated as a
minimization of the functional of two variables with constraints. We show that the objective functional
is Gâteaux diãerentiable with respect to each coeécient. In order to ånd numerically the minimum of
the functional, the algorithm based on the projected gradient method is proposed. The search direction
is obtained by using the Gâteaux partial derivative. By a simple numerical experiment, we conårm the
eéciency of our algorithm. The distribution of coeécients can be identiåed by using our algorithm, but
the calculated values are not satisfactory. We must modify our algorithm to achieve a high resolution
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for our problem. Moreover, we have not obtained the convergence of our algorithm which is defered to a
future investigation.
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