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Abstract - The purpose of this research is to propose a numerical method for the Lamé coefficients
identification problem in linear elastic wave equation: Determine the unknown Lamé coefficients from
the knowledge of the plural sets of simultaneous displacement and traction on the surface of an isotropic,
linearly elastic bounded body. We assume that the initial displacement and velocity are given in the
whole domain. To determine the unknown Lamé coefficients numerically, we adopt the adjoint numerical
method. The minimizing problem with some constrains is introduced by using the variational method.
We show that the objective functional is Gateaux differentiable on the appropriate assumptions. To
find the minimum, we employ the projected gradient method. The search direction is set by using the
Gateaux derivative of the object functional. We show the efficiency of our method by a simple numerical
experiment.

1. INTRODUCTION

In this research, we consider the coefficient identification problem in linear elastic wave equation in
two dimensions. We assume that the elastic body is in a plane strain state.

Let Q C R? be a cross section of an isotropic, linearly elastic, bounded body with smooth boundary
09Q. We denote by u, the i-th component of the displacement (i = 1, 2), by €;; and o;; the ij-th component
of the strain and the stress tensors, respectively. The kinematic equations relating the displacement to

the strain are described by
e — l 8ui + 8’(1,]‘
Y2 ox; 0w )

The constitutive equations representing Hooke’s law are given by

Oij = 2 peij + Aegk bij,
where 6;; is Kronecker’s delta tensor, in which Einstein’s summation convection is used for repeated
indices. Here A and p are the Lamé coefficients. The equations of motion are given by
azui - 80'”‘
Ptz = oz,
where p and T are the density and the duration of observation time, respectively.
We assume that the Lamé coefficients A and p belong to L*°(€2) and satisfy the following conditions:

0< M <Mz)<cl, 0<CW < p(z) <P @)

in Q x (0, 77, (1)

for all € Q2. Here C’g‘l) and C’ftl) (I =1,2) are given positive constants. We notice that assumptions (2)

are stronger condition compared with the conventional ones [2]. Moreover we assume that the density p,
(m)

the initial displacement u;(-, 0) = £™, and the initial velocity Uzt (-, 0) = g™ are given in the whole

i i

domain. Then, our problem is to determine the Lamé coefficients A and p from the knowledge of the plural

sets of simultaneous surface displacements a§m> and tractions ?Z(»m) on 02 x (0, T] (m = 1,2,...,N).
The uniqueness of this inverse problem is guaranteed if the Lamé coefficients are smooth functions and
the Dirichlet-Neumann map is given instead of the finite number of boundary measurements [7].

To determine the unknown Lamé coefficients numerically, we make use of the adjoint numerical method
[8, 9]. This method is often employed for solving the inverse boundary value problem in control theory
[5]. We introduce an objective functional to be minimized, and then the problem is recast as a variational
problem. We show that the objective functional is Gateaux differentiable under certain assumptions. We
propose a numerical algorithm based on the projected gradient method in order to find the minimum
of the functional. The search direction in this method is given by using the Gateaux derivative of the

objective functional. We confirm the efficiency of our algorithm by a simple numerical experiment.
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2. ADJOINT NUMERICAL METHOD

Let F' C Q be a given compact set such that 92N F = (). We now define a subset K of L (Q) x L (Q)
as follows:

K= {(/\, 1) € L®(Q) x L®(Q) | A€ C®(Q\ F), p€ C(Q\ F),

VA < C§\3) on Q\ F, |[Vy| < Cl(f') on Q\F},

where C§\3) and C’,(f’) are given positive constants. We denote by ugm) [A, 1] the i-th component of the
weak solution to the linear elastic wave eqn.(1) with the Lamé coefficients (A, 1) € K and the surface

(m)

displacement Moreover, we denote by 5( )[)\ u] and o(m) [\, p] the ij-th component of the strain

and the stress tensors obtained by using u [)\ 1], respectively. The unknown Lamé coefficients are
determined by minimizing the functional J : K — Ry := [0, 00), defined as

_n m) (m)z
NZZ/ /m A 1) =S 2dsdt, (3)

m=1 i=1

where Si(m) [A, p] is the i-th component of the surface traction obtained by using uz(»m) [A, p] and 77 is a
representative speed of the elastic body 2
To find the minimum of the functional J, we make use of the projected gradient method [4, 6]: For

1=0,1,2,...,
/\z+1> _ (P = anda (N, Ml))) (4)
i1 Py — ar (N, )
where the positive constant a; is a suitable step size and the maps Py and P, are the clip-off operators,
defined by

and
eV (@) < )
Pup)(@) =9 px) (O <plx) <) |
P () > )

respectively. The function Jy(\, 1) represents the first variation of the functional J in the direction to
A, defined by

T+ 8% 1) = IO ) = [ A mard +o(6A])
Q
for any variation 6 in A, with a real valued functional o(||6A]|) of higher order than ||§A]| as it tends
to zero in the norm ||| := ess sup lo(x)|. The function J,(A, p) represents the first variation of the

functional J in the direction to ,u, deﬁned by
IO s1+5) = IO 1) = [ T mbtude -+ ol

for any variation 6u in p. In order to use this method, we require an expression of the first variations Jy
and J,.

We first attempt to get the expression of the first variation Jy(A, u). For this purpose, we try to
obtain the Gateaux partial derivative of the functional J in the direction to A, defined by

JA+Ch, 1) — J(A,
Fwa(h wh = tim LR 1) = T ),
¢—0 C
We notice that the Gateaux partial derivative Jy,x(A, ) coincides with the first variation Jy(A, p) if

Jw,x(A, i) is bounded linear functional on K and Jw,A(), #)h can be represented as the functional form
over L>(Q).
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For any (A, p) € K, ¢ € R, and h € L>°(Q) such that (A + Ch, u) € K, we notice that

N

_ n T (m) —(m) (m) 7 (m)
_N/O /39{2(Si [)\,M]_Si >}(5Si dsdt—i—NmE:Z/ /89|5S |2dsdt (

=1

)

ot

where 6S§m) = SZ»(m) A+ Ch, p] — S( )[)\ p]. To analyze the right hand side of (5), we introduce the

(m)

function v; ~ which is the i-th component of the weak solution to the initial-boundary value problem

0?2 vgm) 881(? )

p -4 in Q x [0, T),
8t2 8($j) (m)
1 \m ov;
s _ L (Ou T 0 in Q x [0, T),
“i aa:j dz;

=2u +AES; i Qx [0, 1),

v; = U)Z»l s ﬁ = on ) X {T},
o™ =2, u] = 5™) om0 x [0, T),

(m)

for the ”initial” time 7. Here w; ’ is the ¢-th component of the weak solution to the boundary value

problem
(a5
Y = O iIl Q,
ij (m)
(m) '™
sm) _ 10w w in O
€ij _2< ox; " o e @
~(m) _ ~(m) ~(m) ;
i;n = 2;1451;I +AEpy 6ij 3 in Q,
™ =2 (s (1) - 56T on 00,

We now define 601(;71) by 601(;71) = og;n) A+ Ch, p] — ( )[)\ u]. Then, from (5) and (6), we have
2

— T - N T
JA+Ch, p) — J(\, i ———/ / v, b0, njdsdt + — g E / / 0S; dsdt . 8
( ) ( ) N Jo Joq 7 N 0 aQ| | ®)

m=1 i=1

From the integration by part with respect to the space direction, we can obtain

3(50(m
/ / o™ §0Mn; ds dt = / /A(m)éom)dxdt—i—/ / da dt
o
m) 5_(m) (m) 525%(5'")
/ / " (50m d:cdt—i—/ /vim p —dxdt 9)
0 ot

for each m, where 5u£m) = ugm) A+ Ch, p] — ugm) [A, p]. From Hooke’s law, we can obtain the following
relation:

80 = Chael I\, 1] 855+ Cha dei 655 + 266l + Noely) 6.

Therefore, we have

S0 E = Cha el N, BT 61 + Cha be BT 81y + 2u eV ET + N 6elET 85
= Chaef [\, 1] €l 4"1) + Cha SeVET™ + 20 8¢ 4’“ + /\65(’" “m> 5i;
= Cha el [, ] €6 *m> + Cha SefEGm 4 el (2,uz-: ™) +>\€(m>5 )
= Chy el [\, W] ES) 4 Chy 8eVEN™ 4 6l ’”> o (10)



S06
4

By substituting (10) into (9), we obtain

/ / o™ §0Mn;ds dt = g/ /hs,g;’ A, p &0 da:dt+§/ /hag,g;g Elm) du dt
o
2
(m) ~(m) 0%5u;" ()
+/0 /Qésij 0y d:cdt—i—/o /p 8752 v, dzdt. (11)

Using the integration by part and 6u§m)| a0x(0,7] = 0, we obtain

2,,(m
/ / 8™ du dt = / / sul™ p da;dt. (12)

dsu™ , du™
Since 5%(7”)(.7 0) = 0, 8; (-, 0) =0, vgm)(-, T) = w(m), and ﬁ(, T) = 0 in §, we obtain the
relation ) )
?8u™ m) s my 00" 0o, (m)
/ / { 5 i — ouy P dr dt = /QpT(-, T)w;" dx. (13)

From eqns (11)—(13), we have

T
/ / vgm Z]» njdsdt
0o Jon
/‘(m) 35%('7") (m (m) ~(m)
_g hskk A, w7 dedt + Q 5t -, T da:—i—( héekk ) dwdt. (14)

Hence, from (8) and (14), we can obtain the following relation:

- _ (m)
JA+Ch, ) = J(A, N):C/Qh (%/0 Ekk A, u] >da;+%/p(%gé (-, T)wgm)da;

— T —
+§%/0 /Qhag,;%g> d dt + - ZZ/ / 165™ |2 ds dt

mlzl

We assume that the density p is a positive constant in the whole domain and the surface displacements
m 3k (m)
HZ( ) et ([0, T];H%(89)> with gk (0)=0for k=0,1,...,5 Then, we can get the Gateaux
derivative of J by using Choi and Nakamura’s result in the scalar wave case [3]. They have obtained the
Gateaux derivative of the functional

T
0
V9K»—>/ |K—“—a|2dsdt,
o Joo On

where u is a solution to the scalar wave equation

@—V (KVu) =0 in Q x (0, T
ot? N ’
and
V= {KGLO"(Q)|O<C’1§K§C’2 on Q, KeC®(Q\F), |VK|§C'3onQ\F}.

Here C; (i = 1, 2, 3) are given positive constants. We notice that the equations of motion (1) and
the objective functional (3) are the same type of Choi and Nakamura’s ones. Therefore, by using their
technique to estimate the functional, we can obtain

(m) (m)
1 : )

lim — / p dou, (-, T) wgm) dx = / p 9 [h, 0](-, T) wgm) dz,
CJa Ot Q

¢—0

T
; (m) 2(m) g gt — ™2 g gt —
%13%/0 /Qhéekk S dvdt =0, lim = ZZ/ /mws Zdsdt =0,

mlzl
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m)

[h, 0](-, T') wgm) dx is bounded linear on L>°(Q) for (A, u) € K. Here we

and the map h — /

denote by the function Ui( )[ p, q] the weak solution of the initial-boundary value problem with the source
term Fi(m) [p, q] as follows:

L — = F; in Q T
8t2 8a:j + 7 [p7 q] m X (07 ]7
m - gu™
m) _ L (O O in Q x (0, 71,
i 2 8%’1 8.’El (15)
5 = 2™ 4 e, in Q x (0, T,
(m)
ulm™ =o, % =0 on Q x {0},
L U™ =0 on 99 x (0, T),
arm
where F;(m)[ ,q] = BZ* [p, q] and 7;5[p, q] :== 2‘15 [/\ 1] +p5kk [/\ 1] s
J
Therefore, we have
— — (m)
_ n (m) &m) i oU; ) ™
TwaOh )b /Qh (N/o e, ] & dt) dot 1 /Qp o lh, 01, T wf™ di
Moreover, by Example 5 on page 118 of [10], there exists a unique sy € L!(Q) such that
8U(m)
/ sy da = / p [, 0)(-, T) (™ dz for Vh € L°(Q). (16)

Hence we can obtain the expression of first variation as follows:

— T
(A p) = % (/0 em) lm) at + s,\> )

In a similar way, we can determine the Gateaux partial derivative of the functional J in the direction
to u, defined by
J(A, h) — J(A,
¢—0 ¢
For any (A, ) € K, ¢ € R, and h € L>®() such that (X, u + Ch) € K, we can obtain

7 (m)
T u)hz/ﬂh <%/0 2¢ [\, 1] & dt) do +N/ U [0, B, T) ™ da,

and there exists a unique s, € L*(£2) such that

ot

ey u):%(/ﬂ 26\, )& dt+su>.

Thus in order to identify the unknown Lamé coefficients, we can summarize the algorithm as follows:

(m)
/hs#da:—/ Ui 10, (-, T) ™ da for Vh € L¥(Q). (17)

Hence we have

Numerical algorithm

1. Select the initial Lamé coefficients Ao and po which satisfy condition (2).

2. For1=0,1,2,...... s do
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(a) Solve the linear elastic wave eqns (1) with the surface displacements Egm) to find sgn) and Si(m)
form=1,2, ..., N.

(b) Solve the boundary value problems (7) to find wgm) form=1,2,..., N.

(c) Solve the initial-boundary value problems (6) to find §§;n) form=1,2,..., N.
(d) Find the function sy and s, by solving (16) and (17), respectively.

(e) Calculate the first variations Jx(\i, ) and J,, (N, p):

— T — T
I, ) = % (/0 8,(!,?) %ZL) dt—l—S)\) s JM()\l, ) = % (/0 288-”) éf;n) dt-i—sM) .

(f) Choose the step size q.
(9) Update the Lamé coefficients by (4).

3. NUMERICAL EXPERIMENT

In this section, we show a simple numerical experiment for our algorithm. Let 2 be a disk with the
radius of L = 1 [m] and assume p = 10.0 x 103 [kg/m®]. The exact Lamé coefficients A [Pa] and p [Pa]
are set as follows (see Figures 1 and 2):

1.15 x 10 s < 0.15
sy = (119107 (lall <015)
1.51 x 10 (otherwise)
0.77 x 101 (||z]|oo < 0.15)
w(x) = u )
0.65 x 10 (otherwise)
where || - ||oo means the maximum norm of RZ.
@© -
o
I
o
~ |
ol |
-
|2
© o
o |
=
0.5 't 05 o0 05 1
Figure 1. Exact . Figure 2. Exact pu.

We utilize the speed of transverse wave on the boundary as the representative speed 77, namely,

__\/ﬁ
N
P

The constants in the constrained condition (2) are given by C{” = 1.00 x 1011, ¢{? = 1.75 x 101,

Y =055 x 101, and C?) = 0.90 x 1011, The length of time is T' = 1.01 x 103 [s] corresponding to
2.6/7]. The initial displacement and velocity are both set to 0.0. We assume that the number of boundary
measurement sets is N = 3.

The boundary data for this example are generated by solving numerically the linear elastic problems
with the traction ?gm —p(t)n; and ?l(-

= 2.55 x 10® [m/s].
o

= 0.0, where

) _ m)
|8Qm><(0,T] - |(aﬂ\m)x(o,T1

: T T o
o, = {(cos@, sinf) | — = < 60— (m— 1)1 < %}



and 12.577 0.16L
sin | =211 0<t<
p(t) = . 0.16L
0.0 t> 'ﬁ

In order to solve this problem numerically, we make use of the Newmark method [1] for time integration
with linear triangular finite elements in space. Calculated values on the circle of the radius L = 1 are
used for the surface displacements and tractions in this example. The initial-boundary value problems in
our algorithm are also solved numerically by using the Newmark method for time integration with linear
triangular finite elements in space (see Figure 3).

Figure 3. Finite elements (5884FE).

We need to obtain the functions sy and s, which satisfy the relations (16) and (17) in order to
determine the first variation. We adopt the Galerkin method to get approximately these functions. Let
{Bp}gjl be a set of subsets of {2 such that

NB
QZUB_]N B,NBy=0(p#q).
p=1

We denote by X, the characteristic function satisfying the relation

_J1 (z € By)
Xp(@) = 0 (otherwise)
NB NB
Then the approximated functions 5y = ZS’\’PXP and 5, = Zsu,po are obtained by solving the
p=1 p=1
equations
- ou™
/ Xp S d = / p =D, 01, T)wi™ de,
Q Q
- ou™
Josude = [ 0T 10 It Ty wl™ de
Q Q
forp=1, 2, ..., Np, respectively. From the orthogonal relation of the characteristic functions, we notice
that

1 ou™ (m)
= — | s Ly 0, T ™ das,
8)‘117 |Bp| /S)p at [XP ]( )w’l, €L

1 3U-(m) (m)
= — ——10 S TYw; ™ d
Su,p |Bp| /Qp 8t [ ) XP]( ) )wz T
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forp=1, 2, ..., Np. In this example, we set Ng = 5 and
B,={xeQ|02(p-1)<|x|2 <0.2p},

where || - ||z means the Euclidean norm of RZ.

We assume that A\g = 1.51 x 10 and po = 0.65 x 10! in the whole domain. After 60 iterations,
we have the calculated A\gp and pgo as shown in Figure 4 and Figure 6, respectively. Figure 5 shows
the distribution of the relative error for Agg. The distribution of the relative error for ugg is obtained
as shown in Figure 7. These figures show that the estimated distribution of the coeflicients are in good
agreement with the exact ones. However, the identified values of the coefficients are not satisfactory.
From this result, we know that our algorithm must be modified in order to achieve a high resolution for
the inverse problem.

-1 -05 0 0.5 1 -0.5 0 0.5 1
Figure 4. Calculated Agp. Figure 5. Relative error (coefficient \).

0.8

-0.5 0 0.5 1
Figure 6. Calculated peo. Figure 7. Relative error (coefficient ).

4. CONCLUDING REMARKS

In this study, we considered the numerical algorithm for the problem of coefficient identification in
linear elastic wave equation in two dimensions. The measured data are assumed to be given by the
plural sets of simultaneous surface displacements and tractions on the whole boundary. We assume that
the density is known, whilst the Lamé coefficients are unknown. To identify numerically the unknown
Lamé coefficients, we make use of the adjoint numerical method. The problem is reformulated as a
minimization of the functional of two variables with constraints. We show that the objective functional
is Gateaux differentiable with respect to each coeflicient. In order to find numerically the minimum of
the functional, the algorithm based on the projected gradient method is proposed. The search direction
is obtained by using the Gateaux partial derivative. By a simple numerical experiment, we confirm the
efficiency of our algorithm. The distribution of coefficients can be identified by using our algorithm, but
the calculated values are not satisfactory. We must modify our algorithm to achieve a high resolution
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for our problem. Moreover, we have not obtained the convergence of our algorithm which is defered to a
future investigation.
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